THE INTERRELATIONSHIP BETWEEN VARIOUS
FLOWS IN A CONDUCTING SYSTEM

B. N. Birger UDC 536.75

We prove a general theorem on the nature of the interrelationship between flows generated
by a single force.

The results [1] derived earlier with respect to the interrelationship between various processes in a
conducting system are generalized here for the case of an arbitrary number of co-current flows [1]. For
the sake of convenience in dealing with the material, we will examine only a discrete system; however, all
subsequent considerations may be appropriately referred to a continuous system.

We will proceed from the statements of nonequilibrium thermodynamics. Adopting the usual notation,
we will write the linear relationship and the expression for the per-second increment in enthalpy in the fol-
lowing form:

n
Ji=YLX; =12 ....n) (1)
=1

o = S 1. @)

i=l

If the flows and forces operative in (1) are independent (any other case can be reduced to this case), accord-
ing to the general theory [2] we then have
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We can therefore express J; in terms of X, and all of the remaining flows are given by
n
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where » and Qj are certain functions of the phenomenological coefficients; Q;J; expresses the fraction added
to the magnitude of the flow J; by the flow J; over and above the values generated directly by the force X;;

n
2 QiJ; represents the total addition to J; by the entire set of flows Jy, J3, . .., Jp. IEX; =0, and X, = X3

i=
=...=Xy=0, J, is the main flow, with the remaining flows representing the co-current flows.

Let us now compare two discrete systems with various matrices of phenomenological coeificients, but
with identical values of ®. When the force X, is acting in one of these systems and generates only the main
flow J;;, and if in the second system, in addition to the main flow Jgj, we have the co~current flows, then

Jin>Ju. 4)
This confirms that the very appearance of the set of co-current flows serves to enlarge the main flow.

We will prove the validity of inequality (4). With this purpose in mind, let us examine two states of
the second system, in one of which only the force X, is effective, while in the second to that force we add
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the forces X,, X;, ..., X, such that J,=Jd3=... = Jn =0, It is always possible to choose such forces,
since Lij B=0.

Let Jiip be the J, flow in the second state. Then, according to (3), we have
Jiu=Ju. (5)

We can apply the Prigogine general theorem on the minimum per-second increment in entropy {3, 4] to the
state of the second system (which we are examining here). The conditions of its applicability are satisfied

because X, is constant for these states and in oue of these the flows J,, J3, . . ., J,, disappear. If opj and
ofj correspond to the first and second states, we have
Oy =0y (6)
1t follows from (2) that
o7 = JinXy, ()
oy =Jm X, (8)

since in the first case all of the flows with the exception of J, are equal to 0, while in the second case all of
the forces with the exception of X, vanish. Comparing @), (7), (6), and (5), we derive (4).

Let us clarify the proved statement with a simple example. For system II we will choose the mem-
brane separating a multicomponent flowing medium into two homogeneous parts; the membrane is permeable
to the particles of this medium. Let X; = AT/T? and J, is the flow of heat. We will assume that the heat
flow through the membrane is interrelated with the flows of matter. If we know the phenomenological coef-
ficients, we can calculate nyp from the formula
_ 1Lyl
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which follows from (3) and (1). We can also find the value of w experimentally, on the basis of the deter-
mining equation (3).

System I is obtained if, instead of the membrane, we use a plate that is impermeable to matter. In
this case, ny = Ly. As is well known [2], Ly; = AT?s /d. Knowing wy and A, we can easily choose the plate
dimensions so that at the test temperature T we satisfy the condition ®1 = »j. On the basis of the statement
which we have proved, we can state that when identical forces X, are active, the heat flow through the mem-
brane is greater than the flow of heat through the plate. This difference is brought about as a consequence
of the fact that co-current flows are set up within the membrane, whereas no such flows are present in the
plate.

Let us now examine the special case in which the co-current flows are not related to each other, i.e.,
the case in which
Lij=0 (,j=23,...,n) when i=£]. (9)

This limitation is imposed on these systems in addition to the conditions which were indicated in the formu-
lation of the general theorem.

Let there be a complete set of co-current flows Jyff, JaIf, . . ., Jpyy in the second system, and let
one of these flows, Jy for example, be missing from the first system. More accurately, Jir =JiL i1 =i
#k and Jyqy # Jgy = 0. We will then again satisfy the relationship

Jin > Jig.

Indeed, we can examine the two states of the second system, in one of which we have only the force
Xy, while in the second state the force Xk is added to the first, so that Jf{II = 0. As a consequence of (9) the
addition of Xj will change the magnitudes of the remaining co-current flows and, consequently,

Ja =Jm=Jdn  (15i%k).

Here we can apply the Prigogine theorem with respect to the constant forces Xj (i # k) and to the disappear-
ing flow Jj.- We will eventually come to relationships analogous to (6), (7), and (8), and considering (10), we
will achieve the required inequality Jyy > J4L

Now, however, as follows from (10), the difference between J41 and JyI1 is governed exclusively by the
flow Ji. This means that in this case each co-current flow is generated independently of the others and is
oriented so as to intensify the main flow J,.
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In conclusion, we note that our results could have been obtained in another way, proceeding directly
from the properties of the quadratic forms and the corresponding matrices. However, this would have re-
quired more complex approaches and would have taken up considerably more space. Haase used this meth-
od to compare the coefficients of thermal conductivity with and without the presence of mass transfer [2].
His relationship is derived directly from (4) and (5), if J; in the latter is understood to refer to the heat flow.

NOTATION
wip and ®1  are the values of w for the membrane and the plate, respectively;
lLijltil is the determinant of the matrix of the phenomenological coefficient;
T is the average value of the temperature for the two sides of the membrane or the plate;
AT is the temperature difference (small in comparison with T) between the two sides of the mem-
brane or of the plate;
dand s are the thickness and cross-sectional area of the plate;
A is the coefficient of thermal conductivity for the plate at the temperature T.
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